Al Birds Competition

Level Generation Track

Jochen Renz, Julian Togelius, Lucas Ferreira, Matthew Stephenson, XiaoYu (Gary)

This document presents a tutorial for installing all the necessary software for generating and testing levels
using the AlBirds Competition software.

The software is composed of two parts: a clone of the original Angry Birds (called Science Birds)
implemented in Unity and an example algorithm, implemented in python, to generate levels. The clone is
totally independent from the generator, which means that one can create another generator in any
programming language. The interface between the generator and the game is done via XML. Thus, at the
end of the generation process, the competitors have to encode their levels into the XML format expected
by the game. This document is organized as follows: Section 1 presents a simple tutorial for installing all
the software, Section 2 presents in detail the XML format for loading levels. Section 3 has a tutorial of
how to run the example generator and test them in the Science Birds game. Section 4 contains a more
detailed explanation of the baseline generator that is provided.

1. Installation

1. Download Science Birds build associated with your operating system:
- Windows: https://aibirds.org/L evel-Generation/Science-Birds-Windows.zip
- OSX: https://aibirds.org/Level-Generation/Science-Birds-OSX.zip
- Linux: https://aibirds.org/Level-Generation/Science-Birds-Linux.zip
2. Download the example of level generation algorithm in python:
http://aibirds.org/Level-Generation/LevelGeneratorBaseline-2.0.zip
3. Run the Baseline level generator to create 20 example levels based on the parameter file.
Copy these levels to StreamingAssets /Levels directory.
5. Run the game and the newly generated levels can now be played from the selection menu.

s

2. Level Structure

The original Angry Birds have several game objects: birds, pigs, blocks, TNTs and other miscellaneous
objects used mainly for decoration. There are several types of birds and they vary in colour and size.
Some of them have special abilities that are triggered by touching the screen after a shot. The game also
have several types of pigs, each of which having a different size and "health™ points. Blocks have
different materials, what impact in their physical properties and "health points”. TNTs are used to cause
explosions that deal damage in area, affecting several blocks and pigs. All these objects are placed on a
terrain that can be either completely flat or complex. Science Birds currently supports only part of these
objects:

https://aibirds.org/Level-Generation/Science-Birds-Windows.zip
https://aibirds.org/Level-Generation/Science-Birds-OSX.zip
https://aibirds.org/Level-Generation/Science-Birds-Linux.zip
http://aibirds.org/Level-Generation/LevelGeneratorBaseline-2.0.zip

- Birds: Can be one of several different colours.
- Red: Normal bird, no strengths or weaknesses.
- Blue: Splits into three birds when clicked, strong against ice blocks.
- Yellow: Shoots forward at high speed when clicked, strong against wood blocks.
- Black: Explodes when clicked or after impact, strong against stone blocks.
- White: Drops explosive egg when clicked.
- Pigs: small, medium and large.
- Blocks: ice, stone and wood.
- TNT: represented in the clone as yellow squares.
- Terrain: Flat by default, but can be more complex using static square platforms.

All these objects can be seen in the level shown in Figure 2. This is the level 2 that is already part of the
game. It has three blocks of each material, three pigs, a TNT block and five birds (one of each type).
Moreover, it has two rows of static square platforms floating in the air.

Figure 2: The second level of the Science Birds Game.

As mentioned before, levels are represented internally using a XML format. This format is basically
composed by a number of birds and a list of game objects, as shown in Figure 3. Each game object has
four attributes:

- Type: unique string representing the id of the object.

- Material: string defining the material of a block. Valid values are only "wood",
"stone" and "ice".

- X, Y: float numbers representing the position of the game object. The origin (0,0) of the
coordinates system is the centre of the level.

- Rotation: float number that defines the rotation of the game object.

<?uml version="1.8" encoding="utf-18"?:

L a2

<Level width="2">
<Camera x="@8" y="8" minWidth="28" maxWidth="26">
- <Birds>
5 «Bird type="BirdRed"/:
6 <Bird type="BirdBlue"/>
7 <Bird type="Bird¥Yellow"/>
8 <Bird type="BirdBlack"/:
9 «Bird type="BirdWhite"/>
16 </Birds>
11 <5lingshot wx="-9" y="-2.5">
12 <Gamedbjects>
13 <Block type="RectTiny" material="wood" x="2.54" y="-3.23" />
14 <Block type="RectTiny" material="wood" x="1.78" y="-3.23" />
15 <Block type="5SquareHole” material="wood" =="2.15" y="-2.68" />
16 <Block type="5SquareHole” material="stone"™ =="2.2" y="8.72" />
17 <Block type="RectTiny" material="stone™ x="1.76" y="0.17" /»
13 <Block type="RectTiny" material="stone™ x="2.8" y="0.17" /:»
19 <Block type="RectTiny" material="ice" x="2.8" y="2.91" /:
28 <Block type="RectTiny" material="ice" x="1.76" y="2.91" /:
21 <Block type="5SquareHole” material="ice™ w="2.2" y="3.458" />
22 <Pig type="BasicSmall" material="" w="2,15" y="-2.12" /»
23 <Pig type="BasicSmall" material="" w="2,2" y="1.38" /:»
24 <Pig type="BasicSmall" material="" w="2,2" y="4,12"
25 <Platform type="Platform" material="" w="1.84" y="-8.31" /»
26 <Platform type="Platform" material="" w="1.64" y="-8.31" /»
27 <Platform type="Platform" material="" w="2,27" y="-8.31" /:
23 <Platform type="Platform" material="" w="3.47" y="-8.31" /:
29 <Platform type="Platform" material="" w="2.86" y="-8.31" />
38 <Platform type="Platform" material="" w="2,79" y="2.4" I
31 <Platform type="Platform" material="" w="3.4" y="2.4" I
32 <Platform type="Platform" material="" w="2,2" y="2.4" I
33 <Platform type="Platform" material="" w="1.58" y="2.4" I
34 <Platform type="Platform" material="" w="0,97" y="2.4" I
35 <TNT type="" x="1.11" y="-4" rotation="8" />
36 «</Gamedbjects>
37 </Level>

Figure 3: XML representation of a Science Birds level

3. Generating and testing a level

In order to learn how to generate and test a level using the clone of the game, participants can use the
baseline generator implemented in python (see Section 1 for download). The source code for the
generator will also be accompanied by an input data file called parameters.txt. This file contains the
necessary information about the levels that will be generated. This information is provided in blocks of
four lines, with each block containing the following information in the given order:

Number of levels to generate (positive integer)
Forbidden block and material combinations (list of valid materials/block types, may be empty)
Range for number of pigs (two positive integers, minimum and maximum)

Time limit to generate levels (minutes) (positive integer)

For the time limit value this will typically be around one hour for every 10 levels and should not be an
issue for most generators.

An example parameters.txt is provided along with the baseline generator.

During the competition, information about what levels to create will be passed to each generator using
this input file, please ensure that your level generator uses this input file correctly.

Save the source code and execute it (you will need to have python installed). It will generate a collection
of files, starting with level-04.xml and increasing upwards from there. To test and play these levels, copy
each file to the StreamingAssets /Levels directory. Finally, open the scene LevelSelectMenu in the Science
Birds game and press play. The menu will show the generated levels along with the base three provided.

4. Algorithm Overview

The baseline level generator provides a simple and effective method for generating levels within Science
Birds. Several self-contained structures are placed within each level, either on the ground or on floating
platforms. The number of ground and platform structures is determined randomly within a defined range.
The available ground space within a level is divided amongst the number of chosen ground structures and
a suitable structure created for each of these sections. After these ground structures have been generated
we attempt to place the desired number of platforms within the level. A platform's location and width are
determined randomly and several checks are made to ensure that it will not overlap any ground structure
or be too close to the top of the level. If a suitable location for a platform cannot be found after a certain
number of attempts then the platform is disregarded. A structure is then generated for each of the
successfully placed platforms. Each structure is generated with respect to the area it will occupy. For
ground structures this area is defined as the width of its allocated section along with two thirds the height
of the level. For platform structures this area is defined as the width of its platform along with the distance
between the platform and either the top of the level, or the closest platform above it (whichever is less).

Each structure is generated using the available blocks, with the probability of a block being selected based
on the defined probability table. Science Birds currently contains eight standard rectangular blocks, five
of which can be rotated 90 degrees to give a different shape. This creates a total of thirteen regular blocks
which are used to build each structure.

The algorithm selects a block type at random using a probability table and uses this block to form the
peak(s) of the structure. Currently there can be between 1 and 5 peaks but this humber can be altered
fairly easily. The distance between the peaks is also randomly selected. New rows are then recursively
added at the bottom of the current structure using the method described below.

The blocks at the base of the current structure are split into subsets based on the distances between them,
with all possible combinations being recorded:

NS00 BQ0

I—II—II—I
—
_

Figure 4: The bottom row of this structure has three possible subset combinations: each block is in a separate set (red), all blocks
are in a single set (blue), and the three left/right blocks are partitioned into two sets (green).

[

A new block type is then selected at random. For each possible subset combination there are now three
possible supporting block placement options:

- Blocks are placed underneath the middle of each subset.
- Blocks are placed underneath the edges of each subset.
- Blocks are placed underneath both the middle and edges of each subset.

ajn|m

Figure 5: Three options for each subset possibility

The number of possible options for the new row is the number of subset combinations multiplied by
three. For each of these options we place the new selected block type and test for two things.

1. No blocks are overlapping each other.
2. Each block on the bottom row of the current structure must be supported at both its edges from the
blocks in the new proposed row (ensures stability).

We then randomly select an option from all combinations which follow these requirements and use that
along with our selected block type to create a new row at the base of the structure. If no options are
deemed valid then a new block type is selected. This process continues until the width or height of the
structure is greater than the respective width or height values for the structure's area. Once this happens
we remove the last row added and the structure is complete.

Once the structure has been created it is populated with pigs. The space directly above the middle and
edges of each block is analysed to see if there is space for a pig to fit such that it doesn’t overlap any other
blocks. Any positions that are found to be big enough to place a pig are recorded. Next, we test all the
possible ground positions that are within the structure (to a set precision). Again we check for any overlap
with nearby blocks and valid positions are recorded. We then randomly choose a position from all the
valid possibilities and place a pig at the given location. Any remaining pig locations that would overlap
the newly placed pig are removed and another location is chosen at random. This continues until there are
no more valid locations. This process ensures that the structure will always contain at least one pig, as a
pig can always be placed on top of the structure’s peak block(s).

After all structures have been generated and populated we attempt to remove or add pigs as required. If
the number of pigs within the level is greater than the desired number of pigs then we randomly remove
pigs until this restriction is satisfied. Any removed pigs have a random chance of being replaced by TNT.
If the number of pigs within the level if less than the desired number of pigs then we randomly place pigs
on the ground until this restriction is satisfied. The number of birds that are available to the user is based
on the number of pigs and structures that are within the level. The type of each bird is selected randomly.
Once the pig numbers and locations are confirmed we attempt to place additional blocks within the level
(TriangleHole, Triangle, Circle, CircleSmall). These blocks are placed in a similar fashion to the pigs.
Valid locations are determined for each block type, after which a specific block is selected at random and
any remaining blocks that would overlap this selected block are removed as valid possibilities. This
continues until no more valid locations remain.

Lastly we convert this structure into the desired xml format and assign each block with a random material.
It is our hope that participants will be able to improve and enhance our baseline algorithm to create

advanced level generator software. It is also possible for participants to create their own level generators
from scratch, providing fresh ideas and insight into generating fun and exciting levels for Angry Birds.

~—

Figure 7: An example of a generated level

6. Using Naive Angry Birds Agent

This section describes how to implement a Naive agent for playing Angry Birds levels and how to use it
to test the levels generated. The Naive agent will fire at a randomly chosen pig with each of the available
birds.

Download the agent server:
http://aibirds.org/Level-Generation/ScienceBirds-server.zip

Extract the .jar file and run the command: “java —jar ScienceBirds-server.jar”
A Server Control Panel should now appear

Download the Naive agent software:
http://aibirds.org/Level-Generation/NaiveAgent.zip

Extract the .jar file and run the command: “java —jar NaiveAgent.jar -nasc”

You should see that the agent has connected to the Server Control Panel

Open you Science Birds build and leave it on the main menu

Click “Start” on the Server Control Panel

The agent will now play through all the available levels in the game, up to level 21.

Please see the Angry Birds Al Competition website for other additional agents to use:
https://aibirds.org/angry-birds-ai-competition.html

http://aibirds.org/Level-Generation/ScienceBirds-server.zip
http://aibirds.org/Level-Generation/NaiveAgent.zip
https://aibirds.org/angry-birds-ai-competition.html

