
Server/Client Architecture

To facilitate the development of AI agents for playing Angry Birds we have separated the game

interaction functionality from the agent logic and reasoning functionality through a client/server

architecture. The server communicates with the Angry Birds game and maintains a history of shots

played by each agent. It exposes a simple communication protocol for the client to execute shots

and perform auxiliary functions such as reload a level. This document described that protocol. The

same protocol will be used for the Angry Birds AI Competition (IJCAI 2013)

It is the 2nd and final version of the protocol. All the changes / modifications are highlighted in red.

Protocols

A typical client message contains a message header that shows the ID of the message (MID) and a

message body (the body can be empty). All the messages (bytes) are encoded in network order (big

endian) form.

Configuration Messages
A configuration message is sent by the client when it first connects with the server. The message

contains the team ID (a four- bytes Integer). On receiving the message, the server will check the

database to verify the ID. The client will be rejected if the ID is invalid. Remember to get your

unique ID from the organizers.

The Message Format

MID Team_ID

Return:

Round Info Time_limit Number of Levels

Round Info: a byte indicates the ongoing round of the competition.

1: 1st qualification round

2: 2nd qualification round

3: Group round (group of 4)

4: Knock-out round (group of 2)

0: Reject

Time_limit: a byte indicates the time limit in minutes

Number of Levels: a byte indicates the number of available levels.

In development version, the server will treat all Integers as valid ID.

In-Game Action Messages:
In the game, an agent is allowed to make shots and zoom out. There are two types of shots

1. Shots specified in the Cartesian coordinate system

2. Shots specified in the Polar coordinate system.

Note that shots will only be executed when in play mode and only in a certain region (see the

following figure). This is done to prevent accidental clicking on buttons or the menu.

The server can execute a shot in the following two modes:

1. Safe mode:

The server will wait 15 seconds after making a shot, and then record the final score when a

won page shows up.

2. Fast mode:

The server will send back a confirmation once a shot is made. The server will not do any

check for the appearance of the won page.

 Why we need the safe mode:

It takes time for the objects affected by a shot to be stationary. Once all the objects are

settled down, a won page will show up when the level is cleared, and then we can get the

final score. This can take up to 15 seconds.

Agents will miss their scores if they send load/reload level requests before the won page is

shown. So by enforcing a certain waiting time at the server side, we can ensure the score

is correctly captured.

 The server will try to record the score when

1. It receives a loadLevel request

2. It receives a restartLevel request

3. It executed a shot in the safe mode.

So, if you submit shots in the Fast mode, you are at risk of missing the scores.

Recommendations:

1. If you just want to make some trial shots, then use the Fast mode and you could get the

response immediately

2. If you know you are about to clear a level e.g. there is only one pig left without sheltering,

then you might want to submit a safe shot

3. If you use fast shots, we recommend that you analyse the screen shots yourself and only

issue a loadlevel or restartlevel request once the won page shows a static score. Otherwise

we might not record your score correctly.

Shot in Cartesian coordinates (cshoot/cFastshoot)
The body of the message contains 6 parameters with each of the parameter consumes 4 bytes. The

parameters are:

1. focus_x : the x coordinate of the focus point

2. focus_y: the y coordinate of the focus point

3. dx: the x coordinate of the release point minus focus_x

4. dy: the y coordinate of the release point minus focus_y

5. t1: the release time

6. t2: the gap between the release time and the tap time.

If t1 is set to 0, the server will execute the shot immediately.

The Message Format

MID focus_x focus_y dx dy t1 t2

 Return 1 or 0

 1: the shot has been made

 0: the shot has been rejected

Note: cshoot and cFastshoot have different MIDs.

Shot in Polar coordinates (pshoot/pFashshoot)
This message is almost the same as the chost message except it uses r and theta instead of d1 and

d2.

r: the radial coordinate

theta: the angular coordinate by degree from -90.00 to 90.00. The theta value is represented by an

integer

E.g. theta = 8025 means the degree is 80.25

The Message Format

MID focus_x focus_y r theta t1 t2

 Return 1 or 0

 1: the shot has been made

 0: the shot has been rejected

Note: pshoot and pFastshoot have different MIDs

0o

-90o

90o
r

θ

Focus point

Shooting sequence
Shooting sequence contains a set of shots that will be made sequentially.

The Message Format (the shot below refers to either a cshot or pshot message):

MID num of shots shot …. shot

Return:

An array with each slot indicates a good/bad shot. The bad shots are those shots that have been

rejected.

For example, the server received 5 shots, and the third one was rejected due to some reason, then

the server will return

[1][1][0][1][1]

You can also submit a shooting sequence in Fast mode. Then the server will send back a

confirmation after all of the shots in the sequence have been executed.

FullyZoomOut
The server will fully zoom out on receiving this message.

The Message Format

MID

 Return 1 or 0

 1: The server has fully zoomed out in the current game.

 0: The server cannot zoom out

When a level is loaded/reloaded, the server will perform the fully zoom out operation automatically

(see section Level Selection Messages). The agents may want to use this command when they

cannot detect the slingshot or “feel” the level is not fully zoomed out.

FullyZoomIn
The server will fully zoom in on receiving this message.

The Message Format

MID

 Return 1 or 0

 1: The server has fully zoomed in in the current game.

 0: The server cannot zoom in

ClickInCenter
The server will make a click in the centre of the screen on receiving this message. You can use this

message to move the camera of the game.

The Message Format

MID

 Return 1 or 0

 1: The server has made a centre click in the current game.

 0: The server cannot make a centre click.

Query Messages
In the competition, an agent is allowed to query the current screen, game state, level and global

scores.

Do Screenshot
The Message Format

MID

Return:

Width Height Image Bytes

The agent will be returned with a bytes array. The first and second four bytes tell the image width

and height respectively. The remaining bytes are raw bytes (as RGB triples) of the image.

Get the State
The Message Format

MID

Return:

Ordinal of the state

The server will return One byte indicates the ordinal of the state

[0]: UNKNOWN [1] : MAIN_MENU [2]: EPISODE_MENU [3]: LEVEL_SELECTION [4]: LOADING

[5]: PLAYING [6]: WON [7]: LOST

Get My Score
The Message Format

MID

Return:

Level 1 score Level 2 score …….. Level 21 Score

The server will return a fixed length (4 * 21) bytes array with every four slots indicates a best score

of the corresponding level. Scores of unsolved and unavailable levels are zero.

Get the Current Level
The Message Format

MID

Return:

Level

Get Best Scores
The Message Format

MID

Return:

Level 1 score Level 2 score …….. Level 21 Score

The server will return a fixed length (4 * 21) bytes array with every four slots indicates a best score

of the corresponding level. Scores of unsolved and unavailable levels are zero.

1: 1st qualification round: this request will return an array of the best scores the naive agent

achieved on the qualification levels.

2: 2nd qualification round: this request will return an array of the best scores achieved in the 1st

qualification round on the qualification levels.

3: Group round (group of four): this request will return an array of the current best scores of their

own group. The scores change whenever a new high score is obtained.

4: Knock-out round (group of two): this request will return an array of the current best scores for the

two participating agents. The scores change whenever a new high score is obtained.

Level Selection Messages
An agent is allowed to select a level by using the following two messages

The following are the operations performed by the server to load/reload a level:

1. Click on the corresponding buttons to go to the level

2. Fully zoom out when “PLAYING” state is detected

3. Return the confirmation

Load a Level
The Message Format

MID Level

The level is indicated by one byte. The value can be set from 0 to the maximum level number (will be

released before the competition). To load the current level, please set the value to 0.

Return:

 Return 1 or 0

 1: the level has been loaded

 0: The server cannot load the level

Restart a Level
The Message Format

MID

 Return 1 or 0

 1: the level has been restarted

 0: The server cannot restart the level

Termination:
There is a timer running at the server side. Once the time limit reaches, the server will turn into

the “about to terminate” mode. In this mode, all the incoming requests will be responded with a

signal byte [2]. Once a client received the signal byte, it should begin to store all the data to the

local disk. The server will drop all the clients 3 minutes after being in the “about to terminate”

mode. At that time we will terminate all agents if they have not yet done so themselves.

Run the Server
1. First start the server from the command line

Java -jar Server.jar [time_limit in minutes]

E.g. java -jar Server.jar 127 will run the server with time limit 127 mins

 java -jar Server.jar 0 will run the server without time limit

 Then you will see this window:

2. Then connect the client, once a client is connected, the connection status will become

“connected”

3. Press “Start” to start the server. The server will drop all clients when time is up.

Summary of the Protocols

MID Request Format (byte[]) Return Format (byte[])

1-10 Configuration Messages

1 Configure
(Team ID)

[1][ID]

ID: 4 bytes

Four bytes array.
The first byte
indicates the
round; the second
specifies the time
limit in minutes,
and the third
specifies the
number of
available levels

[round info][time
limit][available levels]

Round info:
[1]: 1st qualification
round
[2]: 2nd qualification
round
[3]: group round
[4]: knock-out round
[0:] Reject

11-30 Query Messages

11 Do
screenshot

[11] Width, height, plus
image bytes

[width][height][image
bytes]
width, height: 4 bytes

12 Get the state [12] One byte indicates
the ordinal of the
state

[0]: UNKNOWN
[1] : MAIN_MENU
[2]: EPISODE_MENU
[3]: LEVEL_SELECTION
[4]: LOADING
[5]: PLAYING
[6]: WON
[7]: LOST

13 Get Best
Scores

[13] A fixed length (21
* 4bytes)bytes
array with every
four slots indicates
a best score for
the corresponding
level

[score_level1]….[scor
e_level21]

23 Get my score [23] A fixed length
(21*4) bytes array
with every four
slots indicates a
best score for the
corresponding
level

[score_level1]….[scor
e_level21]

14 Get the
current level

[14] One byte indicates
the current level

[1-21]

31-50 In-Game Action Messages

31 Shoot using
the Cartesian
coordinates
[Safe mode]

[31][fx][fy][dx][dy][t1][t2]

Each parameter consumes 4
bytes

OK/ERR [1]/[0]

41 Shoot using
the
Cartesian
coordinates
[Fast mode]

 [35][fx][fy][dx][dy][t1][t2]

Each parameter consumes 4
bytes

OK/ERR [1]/[0]

32 Shoot using
Polar
coordinates
[Safe mode]

[32][fx][fy][theta][r][t1][t2]

Each parameter consumes 4
bytes

OK/ERR [1]/[0]

42 Shoot using
the Polar
coordinates
[Fast mode]

[36][fx][fy][theta][r][t1][t2]

Each parameter consumes 4
bytes

OK/ERR [1]/[0]

33 Sequence of
shots [Safe
mode]

[33][shots
length][MID][Params][MID][Para
ms]

Maximum sequence length: 16
shots

An array with each
slot indicates
good/bad shot.
The bad shots are
those shots that
are rejected by the
server

For example, the
server received 5
shots, and the third
one was not executed
due to some reason,
then the server will
return
[1][1][0][1][1]

43 Sequence of
shots
[Fast mode]

[37][shots
length][MID][Params][MID][Para
ms]

Maximum sequence length: 16
shots

An array with each
slot indicates
good/bad shot.
The bad shots are
those shots that
are rejected by the
server

For example, the
server received 5
shots, and the third
one was not executed
due to some reason,
then the server will
return
[1][1][0][1][1]

34 Fully Zoom
Out

[34] OK/ERR [1]/[0]

35 Fully Zoom
In

[35] OK/ERR [1]/[0]

36 Click In
Center

[36] OK/ERR [1]/[0]

51-60 Level Selection Messages

51 Load a Level [51][Level]

Level : 1 byte

OK/ERR [1]/[0]

52 Restart a
level

[52] OK/ERR [1]/[0]

 The server will respond all the requests with a signal byte [2] when time is up

