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Abstract. An ensemble inference mechanism is proposed on the
Angry Birds domain. It is based on an efficient tree structure for en-
coding and representing game screenshots, where it exploits its en-
hanced modeling capability. This has the advantage to establish an
informative feature space and modify the task of game playing to a
regression analysis problem. To this direction, we assume that each
type of object material and bird pair has its own Bayesian linear re-
gression model. In this way, a multi-model regression framework is
designed that simultaneously calculates the conditional expectations
of several objects and makes a target decision through an ensemble
of regression models. The learning procedure is performed accord-
ing to an online estimation strategy for the model parameters. We
provide comparative experimental results on several game levels that
empirically illustrate the efficiency of the proposed methodology.

1 INTRODUCTION

Angry birds was first launched five years ago by Rovio(TM), and
since then it has become one of the most popular games nowadays.
The objective is to get rid of the pigs, which are usually protected
in structures made of different kinds of building materials, by killing
them. This is achieved by taking control of a limited number of vari-
ous birds’ types, which the player launches to the targets (e.g. build-
ing blocks or pigs) via a slingshot. It must be noted that different
types of birds are available with some of them being more effective
against particular materials, while some other have special features
as will be discussed later. The received return at each level is calcu-
lated according to the number of pigs killed, the number of the un-
used birds as well as to the destruction on the structure that achieved.
Roughly speaking, the fewer birds are used as well as the more dam-
age to the structures achieved, the higher the received return.

Due to its nature (e.g. large state and action spaces, continuous tap
timing, various objects’ properties, noisy object detection, inaccurate
physical models), Angry Birds constitute a really challenging task.
During the last two years, a number of works have been proposed
which are focused on the development of AI agents with playing ca-
pabilities similar to those exhibited by human players. The Angry
birds competitions2 poses several challenges for building various AI
approaches. A basic game platform [5] is provided by the organisers,
that makes use of the Chrome version of the Angry Birds and incor-
porates a number of components such as, computer vision, trajectory
planning, game playing interface which can be freely used for the
agent construction.
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Two different machine learning techniques, the Weight Majority
algorithm and the Naive Bayesian Network, have been applied in [8]
for selecting the most appropriate shot at each time step. However,
the depicted feature space is extremely large since it incorporates a
large amount of information about the scene of the game. In addition,
it requires a preprocessing step over the input data in order to separate
them among positive (shots in winning games) and negative (shots in
losing games) examples. In [4, 6] a qualitative spatial representation
and reasoning framework has been introduced that is capable of ex-
tracting decision rules according to structural properties. Finally, a
model based approach has been presented in [9] which tries to learn
the environmental model. Then, a number of trajectories are tested in
the approximated model by performing a maximum impact selection
mechanism.

In this work, we propose a Bayesian ensemble regression frame-
work for designing an intelligent agent for the Angry Bird domain.
The main advantages of our approach lies on two aspects:

• Firstly, a novel tree structure is proposed for mapping scenes of
game levels, where the nodes represent different material of solid
objects. This state representation is informative as incorporates all
the necessary knowledge about game snapshots, and simultane-
ously abstract so as to reduce the computational cost and accel-
erate the learning procedure. This tree representation allows the
construction of an efficient and powerful feature space that van be
used next for the prediction.

• Secondly, an ensemble learning approach [7] is designed where
every possible pair of ‘object material’ - ‘bird type’ has its own
Bayesian linear regression model for calculating the expected re-
ward. An ensemble integration framework based on the UCB al-
gorithm [1] is employed using the predictions to obtain the final
ensemble prediction. Then, an online estimation procedure is per-
formed in order to adjust the regression model parameters. Finally,
an appropriate Gaussian kernel space has been constructed by us-
ing a clustering procedure to a randomly selected data collection.

The remainder of paper is organised as follows. The general
framework of our methodology is described in Section 2. In partic-
ular, the proposed tree structure which is the main building block
in our approach, together with the ensemble mechanism of linear re-
gressors are presented. Furthermore, some issues are discussed about
the feasibility property of tree nodes, as well as about the tap tim-
ing procedure. To assess the performance of the proposed methodol-
ogy we present in Section 3 numerical experiments on the ‘Poached
Eggs’ game set and give some initial comparative results with the
naive agent provided by the organisers. Finally, in Section 4 we pro-
vide conclusions and suggestions for future research.



2 PROPOSED STRATEGY
Our work is based on the project Angry Bird Game Playing software
(version 1.31). The proposed methodology is focused on establishing
an efficient state space representation, so as to incorporate all the use-
ful information of objects from Angry Birds levels as recognized by
the game vision system. In addition, a decision making mechanism
has been designed using an Bayesian ensemble regression framework
in order to discover the optimum policy and obtain the final ensemble
prediction.

Figure 1 illustrates briefly the proposed approach. A step-by-step
description is the following:

1. Construct the tree structure of the game scene and evaluate each
node.

2. Examine the feasibility of nodes in terms of their ability to be
reached and become possible targets.

3. Calculate the expected reward of each feasible node (target) ac-
cording to a Bayesian ensemble regression scheme, which takes
into account the type of object material, as well as the bird. The
optimum target is then selected.

4. Perform shooting according to a tap timing procedure.
5. Adjust the model parameters of the selected regressor using an

online learning procedure.

Next, we give a detailed description of the main building blocks of
our methodology.

1. Tree structure construnction

2. Feasibility examination

3. Prediction: expected
reward calculation

4. Target and tap time selection

5. Regression model pa-
rameters adjustment

Figure 1. Flow diagram of the proposed method

2.1 An advanced tree-structure for the Angry
Birds scene representation

The input in our scheme is the game scene consists of a list of (dy-
namic or static) objects together with some measurements of them,

as taken by the Angry Bird vision system. We have considered seven
(7) types of materials for objects presented in the game:

• Ice/Glass (I)
• Wood (W)
• Stone (S)
• Rolling Stone (RS)
• Rolling Wood (RW)
• Pig (P)
• TNT (T)

Our state space representation follows a tree-like structure of the
game scene using spatial abstractions and topological informations.
In particular, we construct a tree where each node represents a union
of adjacent objects of the same material. This is done in an hierar-
chical fashion (bottom-up). The root node is considered as a virtual
node that communicates with orphans nodes, i.e. nodes which do not
have any other object above, see for example nodes: s11, s15, s91 in
Fig. 2.

Then, we evaluate each node (s) of the tree using three quantities:

• x1(s): Personal weight calculated as the product of the area
Area(s) of the object with a coefficient cs which is related to
the type of the objects, i.e. x1(s) = Area(s) × cs. All types of
object have the same value for this coefficient, cs = 1, except for
the types of Pig (P) and TNT (T) which have a larger value of
cs = 10.

• x2(s): Parents cumulative weight calculated by the sum of per-
sonal weights of the node’s parents, P(s), in the tree, i.e. x2(s) =∑

s′∈P(s) x1(s′).
• x3(s): Distance (in pixels) to the nearest pig, normalized to [0, 1].

This is made dividing the original distance by 100, where we
assumed that 100 pixels is the maximum distance in the scene
among objects and pigs.

The above strategy introduces an appropriate and powerful feature
space for all the possible targets. An example of this mechanism is
presented in Fig. 2 where illustrates the produced tree structure for
the scene of the first level of the game’s episode. In addition, Table 1
gives the features of the constructed tree nodes.

Table 1. The feature vectors along with the feasible and type labels for the
16 tree nodes of Fig. 2.

Features

Nodes Level Type Feasible
Personal
Weight

(x1)

Above
Weight

(x2)

Distance
(x3)

s11 1 Wood True 65 0 0.818
s12 1 Wood True 312 3557 0.501
s13 1 Wood False 156 7656 0.660
s14 1 Wood False 312 3557 0.501
s15 1 Wood False 65 0 0.818
s21 2 Ice False 162 3682 0.504
s22 2 Ice False 130 3682 0.504
s31 3 Wood False 125 3557 0.341
s41 4 Wood False 318 3239 0.151
s51 5 Wood True 318 377 0.164
s52 5 Wood False 72 1777 0.082
s53 5 Wood False 318 377 0.198
s61 6 Pig True 1400 377 0.170
s71 7 Wood True 156 221 0.431
s81 8 Stone True 156 65 0.521
s91 9 Wood True 65 0 0.651
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Figure 2. The proposed tree structure consisting of 16 nodes at the first game level.

2.2 Feasibility examination
The next step to our approach is to examine each node in terms of its
possibility to be reached. Infeasible situations could be happened as
the bounding boxes of objects in the scene may not be able to per-
fectly fit these structures and they often have irregular non-convex
shapes. In addition, it is possible some obstacles and stable struc-
tures such as mountains, to be inserted between the slingshot and the
target. Therefore, an examination step is required at each node so as
to ensure that the corresponding trajectories can reach the target.

It must be noted that two different trajectories are calculated, a di-
rect shot (angle <= 45◦) and a high arching shot (angle > 45◦).
Both of them are examined in order to estimate the tree’s nodes fea-
sibility, see Fig. 3. If there is at least one shot that could reach that
node (target) directly, we label it as feasible (Fig. 3(a)), otherwise the
tree’s node is labeled as infeasible (Fig. 3(b)). In the case where both
trajectories are accepted, priority is given on the direct shot due to its
effectiveness. Finally, in the case of the white bird a node is consid-
ered as feasible if it can be reached by bird’s egg (Fig. 4), as opposed
to the other types of birds.

2.3 Ensemble of linear regression models
In our approach we convert the problem of selecting an object for
shooting into an ensemble regression framework. We consider the
reward values as the real target values tn of samples (feature vec-
tors) xn which are observed sequentially. They correspond to noisy

measurements of the output of an M -order linear regression model
together with an additive noise term εn:

tn =

M∑
i=1

wiφi(xn) + εn = w>φ(xn) + εn ,

where w = (w1, . . . , wM )> is the vector with the M unknown
regression parameters. The above equation represents the reward
as a linearly weighted sum of M fixed basis functions denoted by
φ(x) = (φ1(x), φ2(x), . . . , φM (x))>. The error term ε is assumed
to be zero mean Gaussian with variance 1/β, i.e. ε ∼ N (0, β−1).

Specifically, we have considered Gaussian kernels as basis func-
tions following the next procedure: At first we have gathered a num-
ber of data (feature vectors) from different scenes of the game. Then,
we performed an agglomerative hierarchical clustering procedure to
them, where we have applied the standardized Euclidean distance
for the merging procedure. Finally, we have selected a number M
of clusters, where we calculated their mean mik and variance s2ik
for any feature (k = {1, 2, 3}). Therefore, kernel functions have the
following form:

φi(x) = exp

(
−

3∑
k=1

(xk −mik)2

2s2ik

)
.

It must be noted that the number of clusters was not so crucial for the
performance of the method. During our experimental study we have
found that a number of M = 150 clusters was adequate.



(a) (b)

Figure 3. Tree’s node feasibility examination. (a) Represents a feasible node (pig) as it is reachable by at least one trajectory. The direct shot is infeasible due
to the fact that a mountain is interposed between the slingshot and the target. (b) An infeasible node (wood) is represented as it is not directly reachable due to

the tree structure.

Consider a sequence of observations (input vectors) {xk}nk=1

along with the corresponding targets t1:n = {tk}nk=1. Therefore,
given the set of regression parametersw, β we can model the condi-
tional probability density of the targets t1:n with the normal distribu-
tion, i.e.

p(t1:n|w, β) = N (t1:n|Φnw, β
−1In) ,

where matrix Φn = [φ(x1),φ(x2), . . . ,φ(xn)]> is called the de-
sign matrix of size n× n and In is the identity matrix of order n.

An important issue, when using a regression model is how to de-
fine its order M , since models of small order may lead to under-
fitting, while large values of M may lead to overfitting. One ap-
proach to tackle this problem is through the Bayesian regularization
method that has been successfully employed at [11, 2]. According to
this scheme, a zero-mean (spherical) Gaussian prior distribution over
weights w is considered:

p(w|α) = N (w|0, a−1I),

where the hyperparameter α is the common inverse variance of all
weights and I is the identity matrix. In this direction we can obtain
the posterior distribution over the weightsw, which is also Gaussian,
as:

p(w|t1:n, α, β) = N (w|µn,Σn) ,

where its mean and covariance are given by

µn = βΣnΦ>n t1:n , Σn = (βΦ>n Φn + aI)−1.

Then, when examining a test point (node) x∗ we can calculate
the prediction and obtain its corresponding target t∗ according to the
predictive distribution. In the Bayesian framework, this is based on
the posterior distribution over the weights,

p(t∗|t1:n, α, β) = N (t∗|µ>nφ(x∗), β∗) ,

where
1

β∗
=

1

β
+ φ(x∗)

>Σnφ(x∗).

Our framework follows an ensemble approach in the sense that we
have a separated regression model for each pair of material object and
bird type. Totally, there are 7 × 5 = 35 different parametric linear
regression models, each one has its own set of regression parameters

θj = {wj , βj}. Thus, every time we select a regressor for estimating
the expected reward per each possible target (node).

In our approach, we have translated the selection mechanism into
a multi-armed bandit problem which offers a trade-off between ex-
ploration and exploitation during learning. In particular, we have ap-
plied the Upper Confidence Bound (UCB) algorithm [1] for choos-
ing the next arm (bird-material type regressor) to play. The selection
mechanism is restricted only to the feasible nodes of the current tree.
According to the UCB, each arm maintains the number of times (fre-
quency) that has been played, denoted by nf(q), where f(q) corre-
sponds to the type of the regression model for the specific node q
and the bird type used. The algorithm greedily picks the arm f(j∗)
as follows:

j∗ = arg max
q

{(
µf(q)

nf(q)

)>
φ(xq) + C

√
2 lnN

nf(q)

}
,

where N is the total number of plays so far, xq is the feature vector
of a node and µf(q)

nf(q)
is the current estimation of the regression coef-

ficients that corresponds to the ensemble of the specific bird-material
type pair. Finally, C is a constant of the UCB decision making pro-
cess (during our experiments we have used C = 3000).

2.4 Tap Timing
After selecting the target among the feasible nodes of tree, the tap
timing procedure is then executed. Using the trajectory planner com-
ponent of the game playing framework the corresponding tap time is
calculated and a tap is performed right before the estimated collision
point. In our approach the tap time strategy depends on the type of
birds used:

• For the red and black birds (Bomb birds are the most powerful
among the birds) no tapping is performed.

• Blue birds (the Blues) split into a set of three similar birds when
the player taps the screen. The agent performs a tap in an interval
between the 65% and 80% of the trajectory from the slingshot to
the first collision object.

• Yellow birds (Chuck) accelerate upon tapping which performed
between 90% and 95% of the trajectory in the case of high-arching
shots (angle > 45◦). In the case of direct shots (angle <= 45◦),



tap time has been selected randomly between 85% and 90% of the
trajectory.

• White birds (Matilda) drop eggs in the target below them. In this
case tapping is executed when the bird lies above the target (see,
Fig. 4). As experiments have shown, this strategy is very efficient
for handling this specific type of birds.

Figure 4. Tap timing procedure for the white bird.

2.5 Online learning of model parameters
The final step of the proposed scheme is the learning procedure. Due
to the sequential nature of data, we have followed a recursive esti-
mation framework for updating the regression model parameters [2].
This can be considered as an online learning solution to the Bayesian
learning problem, where the information on the parameters is up-
dated in an online manner using new pieces of information (rewards)
as they arrive. The underlying idea is that at each measurement we
treat the posterior distribution of previous time step as the prior for
the current time step.

Suppose that we have selected a regressor, k , f(j∗), for mak-
ing the prediction upon an object that has a feature vector xnk+1.
After the tapping procedure we receive a reward tnk+1. The recur-
sive estimated solution is obtained by using the posterior distribution
conditioned on the previous nk measurements t1:nk :

p(wk|t1:nk ) = N (wk|µk
nk
,Σk

nk
).

The new received observation (reward) tnk+1 follows the distribu-
tion p(tnk+1|wk) = N (tnk+1|wT

k φ(xnk+1), βk). Thus, we can
obtain the posterior distribution of weights as:

p(wk|t1:nk+1) = p(tnk+1|wk)p(wk|t1:nk )

= N (wk|µk
nk+1,Σ

k
nk+1) ,

where the Gaussian parameters can be written in a recursive fashion
as:

Σk
nk+1 =

[
(Σk

nk
)−1 + βkφ(xnk+1)Tφ(xnk+1)

]−1
,

µk
nk+1 = Σk

nk+1

[
βkφ

T (xnk+1)tnk+1 + (Σk
nk

)−1µk
nk

]
.

The above equations constitute a recursive estimation procedure
for the regression model parameters. In the beginning of the estima-
tion (i.e. step 0) all the information we have about the model pa-
rameters wk, is the prior distribution p(wk) which is assumed to

be zero mean Gaussian (µk
0 = 0) with spherical covariance matrix

(Σk
0 = a−1I). A last note is that, the sequential nature of estimation

allows us to monitor the effect of learning progress to parameters.

3 EXPERIMENTAL RESULTS

A series of experiments has been conducted in an attempt to ana-
lyze the performance of the proposed agent (AngyBER) in the Angry
birds domain. Due to the low complexity of the general framework
of our agent, the experiments took place in a conventional PC3.

Our analysis was concentrated mainly on the first 21 levels of the
freely available ‘Poached Eggs’ episode of Angry Birds. During the
learning phase of the AngryBER agent, a complete pass of the previ-
ously mentioned episode was executed more than once (in our study
we have passed the episode 10 times). For comparison purposes, we
have used the default naive agent, as well as the published results of
the participant teams of the last IJCAI 2013 Angry Birds competi-
tion, since they are provided by the the organizers of the competi-
tion4. During testing, we have tried to follow the instructions men-
tioned in the competition rules, by setting a time limit of 3 minutes
per level on average, that is, a total time of 63 minutes for the 21
levels. It must be noticed that our agent requires approximately forty
(40) minutes for a successfully episode completion.

The depicted results are presented in Table 2 that gives statistics
about the performance of the AngryBER agent, i.e. mean values and
stds of the score reached per game level. Note that (after learning)
we have made 10 independent runs of the episode. More specifi-
cally, mean and standard deviation of the score received per level,
averaged over 10 runs. Furthermore, the maximum and minimum re-
ceived score per level is also given.

The first remark that stems from our empirical evaluation is that
our AngryBER agent achieves to pass every level with success at
each run. Apart from a small fraction, AngryBER achieves to gain
quite large scores in the majority of levels. That is interesting to be
noted is the fact that our agent obtains the highest score in seven
(7) levels as highlighted in Table 2, comparing with the results of
all other agents of the last year’s competition. At the same time,
the mean accumulative score received per episode is approximately
equal to the highest total score achieved among all the other agents.

Another impressive characteristic of the proposed scheme is its
ability to speed-up learning process and to discover near optimal
policies quite fast. We believe that this is happened due to the tree
structure representation in combination with the ensemble strategy.
This allows AngyBER agent to be specialized at each possible pair
material-bird type, recognizing the special bird’s behavior on specific
materials. Last but not least, it must be noted that we have conducted
a number preliminary experiments on Levels 22-42, where the results
were similar making the generalization ability of our approach more
evident.

4 CONCLUSIONS AND FUTURE WORK

In this work, we presented an advanced intelligent agent for playing
the Angry Birds game based on an ensemble of regression models.
The key aspect of the proposed method lies on the efficient represen-
tation of state space as a tree structure and the exploitation of its supe-
rior modeling capabilities to establish a rich feature space. An ensem-
ble scheme of Bayesian regression models is then presented, where

3 Intel Core 2 Quad (2.66GHz) CPU with 4GiB RAM
4 https://aibirds.org/benchmarks.html



Table 2. Performance statistics of the proposed agent in the first 21 levels of the ‘Poached Eggs’ episode

Level AngryBER Agent Naive Agent High scores of IJCAI 2013
Mean Scores Max Scores Min Scores Angry Birds Competition

1 28740 ± 165.6 28940 28400 29510 31210
2 51370 ± 2875.1 52360 43190 52230 60400
3 41917 ± 9.5 41920 41890 40620 42240
4 27049 ± 3485.6 29110 20350 20680 36770
5 65483 ± 2272.9 69800 63350 55160 65850
6 33961 ± 2860.0 35200 26020 16070 36180
7 26449 ± 7767.8 45650 20430 21590 49120
8 53191 ± 8782.2 57110 28240 25730 57780
9 36053 ± 7392.9 52320 24410 35490 51480
10 50547 ± 11221.9 65560 37980 32600 68740
11 55211 ± 7756.4 60030 33490 46760 59070
12 50151 ± 5502.5 54800 36530 54070 58600
13 43945 ± 7214.3 50920 25200 49470 50360
14 70181 ± 7176.1 79330 56620 50590 65640
15 43185 ± 3998.4 51620 38460 46430 55300
16 60430 ± 3295.1 63650 53680 55210 66550
17 48242 ± 3745.8 52050 39760 48140 54750
18 42975 ± 3145.8 48480 40210 49430 54500
19 30622 ± 4533.6 39110 21130 37920 38460
20 45523 ± 5643.8 54370 38870 36790 56050
21 66012 ± 5911.5 78100 58760 54240 75870

Total 971237 ±14647 991370 943250 858730 1134920

different bird-material type of regressors over the tree are combined
and act as ensemble members in a competitive fashion. The best pre-
diction is then selected for the decision making process. Learning
in the proposed scheme is achieved in terms of an online estimation
framework. Initial experiments on several game levels demonstrated
the ability of the proposed methodology to achieve improved perfor-
mance and robustness compared to other approaches on the Angry
Birds domain.

We are planning to study the performance of the proposed method-
ology to other game levels and test its generalization capabilities
more systematically. Since the tree structure is very effective and
convenient, another future research direction is to examine the pos-
sibility to enrich the feature space with other alternative topological
features which can be extracted for the proposed lattice structure.
A general drawback in the regression analysis is how to define the
proper number of basis functions. Sparse Bayesian regression offers
a solution to the model selection problem by introducing sparse pri-
ors on the model parameters [11], [10], [3]. During training, the co-
efficients that are not significant are vanished due to the prior, thus
only a few coefficients are retained in the model which are considered
significant for the particular training data. This constitutes a possible
direction for our future work that may improve further the proposed
methodology.
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