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Abstract. Angry Birds is a well known game in which the main
aim is to destroy all pigs located in a given level using a slingshot
and birds of various kinds. In most cases pigs are positioned among
other objects - building blocks, rocks or specifically profiled ground
- whose behaviour reflects the laws of physics. The game rewards
chariness of a player - the less birds she uses and the more damage
she does to the whole structure in the level, the higher score she gets.

In our paper, we attempt to indicate the essential factors playing
role in the process of destruction. Thus, we provide definitions of in-
fluence (which we further divide into two categories - horizontal im-
pact and vertical impact), stability and connection points. Whereas
the latter two can be evaluated regardless of what shot we will actu-
ally take, the former requires an assumption about the shot and it is
counted by means of iterative analysis involving two central concepts
- propagation of force (in the case of horizontal impact) and center
of rotation (in the case of vertical impact).

The ultimate goal of the whole procedure is assigning each object
which is reachable by a shot a numerical value expressing the scale
of damage it does once hit. The playing program is then supposed to
shoot at the object with the highest value.

1 Introduction

Angry Birds game gained popularity thanks to its simple rules and
the behaviour of the game environment reflecting the laws of physics.
The main aim in each level is, having a bundle of birds (sometimes of
various kinds) at hand, to kill all the pigs, doing as much damage to
other objects as possible. Usually pigs are not exposed to direct shots
- in these situations one first has to get through sheltering structures
protecting a pig. Since the number of birds we have at our disposal
(our ammo) is each time limited, we need to carefully select points
we want to shoot at. A bad choice can result in a pig surviving the
whole cannonade. If we take a closer look at difficulties the game
can cause to players of both types - human and AI - it turns out that
what is the toughest task for a human agent - hitting the selected
target - for an AI agent is a matter of routine. Indeed, having the ob-
ject picked, a program can easily attune angle and power of the shot
using patterns known from simple Newtonian physics. The choice
of an object worth targeting at is, however, much tougher for an AI
agent, notwithstanding the fact that humans often make it intuitively
without serious trouble. The aim of this paper is, therefore, to intro-
duce an algorithm that reflects human-like reasoning while picking
out objects that are most valuable from the strategic point of view.

In existing literature on space representation (also in papers con-
cerning Angry Birds) many qualitative approaches are presented.
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Several most notable examples are: RCC − 8 ([7]), Allen’s Inter-
val Algebra (primarily introduced as representation of the flow of
time, see [1]), Rectangle Algebra ([2]) or the 4-Intersection Method
([3]). Despite their qualitative nature (which could presumably im-
ply that they resemble human reasoning) they struggle with certain
common difficulties, namely relatively low expressive power. In the
context of such a complex problem like modelling behaviour of a
set of objects in a dynamic environment they are insufficient in most
cases. Thus, both RCC − 8 and the 4-Intersection Method can only
express topological information (A overlaps B, A is disconnected
from B etc.), whereas Rectangle Algebra - captures both topological
and directional properties of rectangles (like, e.g., to be above or to
be to the left, cf. [8, 9]) but leaves “untouched” the issue of mutual
physical impact of the objects (for instance, A has a horizontal im-
pact on B of value n) which usually can be evaluated in a dynamic
context. A rather fruitful attempt of exploiting an extended version
of the Interval Algebra and Rectangle Algebra can be found in [8, 9].
However, these tools are the most efficient in the case of blocks posi-
tioned orthogonally to two main axes. Usually such layout can only
be found in an initial situation (before the first shot) in each level.
After the first shot, often introducing a high level of entropy to the
construction of blocks, most objects are positioned slantwise.

In this paper we focus not only on the initial layouts of block con-
structions but we also take into account more messy arrangements
after the shots being taken. The main goal we want to achieve is
attributing a unique numerical value to each object reachable by a
shot. Consequently, object with the highest number - representing its
highest strategic value - is chosen to be shot at in the first place. Our
approach is both qualitative and quantitative. Qualitative because we
qualitatively pick factors which, in our opinion, play the key role in
the process of destruction carried out in the game. Hence, we dis-
tinguish and scrutinize the “static” notions: stability (involving the
notions of mass and relative location) shelter, being above or touch-
ing and the “dynamic” notions: horizontal and vertical impact (with,
respectively, force propagation and center of rotation as their central
concepts). The process of selection of such key values is of qualita-
tive nature as well as assigning them weights when calculating their
overall impact on the whole arrangement. Quantitative factor of the
approach is expressed by a numerical character of all patterns used
to count the final value of a block. Certain inspirations from naive or
qualitative physics (cf. [4, 6, 5]) can also be traced in our proposal.

2 Representation

Since the final choice of the best shot in an Angry Birds gameplay is
based mainly on objects’ spatial configuration, it follows that space
representation of Angry Birds level plays a significant role here. The
vision module provided by Angry Birds Competition organizers en-
ables to extract all objects from a gameplay scene, i.e. to determine



their contours, center points, etc. Our approach extends this quanti-
tative representation and involves more abstract qualitative relations
such as: “object o1 touches o2”, “object o1 is above o2” or “object
o1 is a shelter for o2”. Such qualitative representation is more natu-
ral for human cognition and seems to be essential for a human while
playing Angry Birds.

2.1 Quantitative representation
The provided vision module enables us to calculate the following
quantitative data:

• O = {o0, o1, . . . } – the set of all objects, i.e. the set containing
blocks, pigs, hills and ground, where each object oi is identified
with points inside oi, i.e. oi = {pi | pi ∈ oi},

• center(o1) – the center point of o1 object, i.e. the center of o1
mass

• area(o1) – an area of o1 object,
• x(p) – the x coordinate of a point p,
• y(p) – the y coordinate of a point p,
• dist(p1, p2) – distance between points, i.e. the number of pixels

between p1 and p2,
• dist(o1, o2) – distance between an object o1 and an object o2, i.e.
dist(o1, o2) = min

p1∈o1,p2∈o2
dist(p1, p2),

• dist(p, o1) – distance between a point p and an object o1, i.e.
dist(p, o1) = min

p1∈o1
dist(p, p1),

• width(o1) – width of a Minimal Bounding Rectangle (MBR) for
an object o1 – see Fig. 1,

• height(o1) – height of a Minimal Bounding Rectangle (MBR) for
an object o1 – see Fig. 1,

• object_type(o1) – a type of an object o1, i.e. ice, wood, stone or
pig,

• B = {b1, b2 . . . } – the set of all birds,
• bird_type(b) – a type of a bird b, i.e. red, blue, yellow, white

or black.

o1

center(o1)

width(o1)

height(o1)

Figure 1: The object o1, its center of mass and MBR’s height and
width.

Additionally, the trajectory module provided by the organizers en-
ables us to determine traj(o1) = {traj→(o1), traj↗(o1)}, i.e.
a set of 2 trajectories (low and high) of a shot targeted at the
center of o1, where traj→(o1) = {p0, p1, p2, . . . } is a set of
points that belong to the low parabola trajectory and traj→(o1) =
{p0, p1, p2, . . . } is a set of points that belong to the high parabola
trajectory.

In the paper, we use the following notation:

• o0, o1, o2, . . . for objects, with o0 reserved for ground
• O1, O2, . . . for sets of objects,
• p, p0, p1, p2, . . . for points,

• B for the set of all birds,
• b, b0, b1, b2, . . . for birds.
• T for the set of all trajectories,
• t, t0, t1, t2, . . . for trajectories.

2.2 Qualitative representation

We define touch – a binary relation between objects. Intuitively, two
objects touch each other whenever they have a common point. How-
ever, since the computer vision component of the game playing soft-
ware does not always precisely identify objects’ location, we also
consider objects that do not have any common point, but the distance
between them is smaller than a constant c (c is about 2 pixels), being
in touch relation – see Definition 3.

Definition 1 (touch relation).

∀o1, o2 ∈ O(o1 6= o2 → (touch(o1, o2) ≡ dist(o1, o2) < c)))

Obiously, the touch relation is irreflexive and symmetric. As an
example consider the block structure presented in Fig. 2, where o1
touches o2, o4 and o0 (ground), therefore the following statements
are true: touch(o1, o2), touch(o1, o4), touch(o1, o0).

o1 o2
o3

o4

o5 o6

o0

Figure 2: A sample block structure.

For any two objects o1, o2 that are in touch relation, we deter-
mine a set of connection points i.e. a set of points that are simulta-
neously very close to o1 and o2 (closer than the constant distance c).
More precisely, we define a function connection_p : O × O →
{p0, . . . , pn}, as presented in Definition 2.

Definition 2 (connection_p function).

∀o1, o2 ∈ O(connection_p(o1, o2)

= {p | dist(p, o1) < c ∧ dist(p, o2) < c})

Definition 3 (touch relation).

∀o1, o2 ∈ O(touch(o1, o2)

≡ (o1 6= o2 ∧ connection_p(o1, o2) 6= ∅))

Furthermore, we determine 3 significant points that belong to
connection_p(o1, o2), i.e. the leftmost, rightmost and center con-
nection points, by means of functions presented in Definitions 4, 5
and 6.
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Definition 4 (left_p function).

left_p(o1, o2) = p | p ∈ connection_p(o1, o2)

∧x(p) = min
pi|pi∈connection_p(o1,o2)

x(pi)

∧y(p) = 1

2
·
(

min
pj |pj∈connection_p(o1,o2)

∧x(pj)=x(p)

y(pj)

+ max
pj |pj∈connection_p(o1,o2)

∧x(pj)=x(p)

y(pj)

)
.

Definition 5 (right_p function).

right_p(o1, o2) = p | p ∈ connection_p(o1, o2)

∧x(p) = max
pi|pi∈connection_p(o1,o2)

x(pi)

∧y(p) = 1

2
·
(

min
pj |pj∈connection_p(o1,o2)

∧x(pj)=x(p)

y(pj)

+ max
pj |pj∈connection_p(o1,o2)

∧x(pj)=x(p)

y(pj)

)
.

Definition 6 (center_p function).

center_p(o1, o2) = p | p ∈ connection_p(o1, o2)

∧x(p) = 1

2
· (x(left_p(o1, o2)) + x(right_p(o1, o2)))

∧y(p) = 1

2
·
(

min
pj |pj∈connection_p(o1,o2)

∧x(pj)=x(p)

y(pj)

+ max
pj |pj∈connection_p(o1,o2)

∧x(pj)=x(p)

y(pj)

)
.

As an example consider the structure presented in Fig. 3, where
o1 touches o2, therefore we can determine the set of connection
points connection_p(o1, o2) and among them: the leftmost, right-
most and center connection points. In this example we have p1 =
left_p(o1, o2), p2 = right_p(o1, o2) and p3 = center_p(o1, o2).
Note also that in the case horizontally adjacent object left_p,
center_p and right_p collapse to a single point, namely the point
located in the “middle” of the connection_p set. It is justified by the
fact that we only distinguish between particular connection points
when we are searching for rotation centres, which is inherently con-
nected with vertically adjacent objects.

o1

o2
p1 p2

p3

Figure 3: left_p, center_p and right_p connection points between
objects o1 and o2.

We define the upper edge of an object o1 as a set of points
{p0, . . . , pn} such that for each i ∈ {0, . . . , n}, pi belongs to
the o1 contour and a point directly above pi does not belong to
the o1. The upper edge of an object is determined by the function
upper_edge : O → {p0, . . . , pn} defined below.

Definition 7 (upper_edge function).

∀o1 ∈ O(upper_edge(o1) = {p ∈ o1 |
∀p1(p1 = 〈x(p), y(p)+1〉 → p1 /∈ o1).

A pictorial presentation of the upper_edge of objects of various
shapes is presented in Fig. 4.

Figure 4: upper_edge for objects with various shapes.

Now we can define above – a binary relation between objects.
The intuitive meaning of above(o1, o2) is that o1 lies on o2, i.e. o2
is pressed by o1 weight. A formal definition of the above relation is
given below.

Definition 8 (above relation).

∀o1, o2 ∈ O(above(o1, o2) ≡ touches(o1, o2)
∧ center_p(o1, o2) ∈ upper_edge(o2))

The above relation is obviously irreflexive and asymmetric. It
should be clarified that above(o1, o2) is not equivalent to the state-
ment that o2 is a support for o1, e.g. in Fig. 2 we have above(o1, o2)
but at the same time o1 is a support of o2 (even though, due to asym-
metry of above, it is not the case that o2 is above o1. The above
relation will play a significant role in our reasoning algorithm, there-
fore it needs to be understood correctly and cannot be confused with
a support relation. We will denote a transitive closure of the above
relation by above?, which is obviously irreflexive, asymmetric and
transitive.

2.3 Shelters
In Angry Birds it often appears that there is no other way of hitting
a pig than destroying its sheltering structure first. It is then reason-
able to define sheltering objects and to distinguish the most important
shelter. We define shelter – a ternary relation between two objects
and a trajectory which denotes the fact that the first object is a shelter
for the second object (always a pig) with respect to a given trajectory.
Intuitively, shelter(o1, o2, t) means that we cannot directly shoot a
pig o2 using trajectory t, because o1 stands in the way leading to
o2, i.e. o1 is situated on the trajectory t before o2. More precisely,
shelter(o1, o2, t) whenever o2 is a pig and o1 lies on one of trajec-
tories estimated by the trajectory module for a shot aiming at o2. A
formal definition of the shelter relation is as follows.

Definition 9 (shelter function).

∀o ∈ O∀t ∈ T (t ∈ traj(o) ∧ pig(o)
→ shelter(o, t) = [o1, . . . , on−1, on]),

where on is located nearest to o and the lower the index of an
element in the sequence, the further the element is located from o.

Furthermore, for each object we determine a shelter value which
allows us to distinguish between more and less important shelters.
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We define a function shelter_val : O → R that maps an object into
its shelter value. A shelter value of o1 increases as the distance to
the sheltered pig o2 decreases, the number of objects between o1 and
o2 decreases or the number of pigs sheltered by o1 increases. The
formal definition of shelter_val is presented below.

Definition 10 (shelter_val function).

∀o1 ∈ O
(
shelter_val(o1) =∑

o2|∃t
o1∈shelter(o2,t)

max
t|o1∈shelter(o2,t)

1

dist(o1,o2)
· 1

no_between(o1,o2,t)+1

)
,

where no_between(o1, o2, t) is a number of objects between o1 and
o2 on trajectory t.

As an example consider Fig. 5. On a trajectory t1 there are 2 shel-
ters for the o4 pig, namely o2 and o3. However, o3 has the highest
shelter_val because it is closest to the o4 pig and there is no other
shelter on the trajectory t1 between o3 and o4.

o1

o2
o3

o0

o4

t1

Figure 5: o2 and o3 are shelters for the o4 pig, while considering t1
shooting trajectory.

2.4 Stability
Stability is a quality of an object, which represents how hard it is to
move it, e.g., by hitting it with a bird or another object. The object’s
o1 stability increases whenever the number and stability of objects
directly below o1 increases, o1 ratio of width to height increases,
the cumulated mass of o1 and all objects above o1 increases, and a
cumulated mass of the objects directly to the right of o1 increases.
Formal definition of a function stability : O → [0, 1] that assigns
each object a stability value from the interval [0, 1] (where 0 means
that the object will move without any stimuli, while 1 means that the
object is impossible to move) is presented below.

Definition 11 (stability function).

∀o1 ∈ O
(
stability(o1) =

(card({o2 | above(o1, o2)})∑
o2|above(o1,o2)

1
stability(o2)

· ratio(o1) ·mass(o1)
) 1

1+ max
o2|on_right(o2,o1)

area(o2)ρ(o2)
)
,

where

∀o1∈O

(
ratio(o1)=

{
1 if width(o1) ≥ height(o1)
width(o1)
height(o1)

otherwise

)
,

∀o1∈O

mass(o1)= 1

1+
∑

o2∈{o2|o1∨above(o2,o1)}
area(o2)ρ(o2)

 ,

∀o1, o2 ∈ O(on_right(o1, o2) ≡ touch(o1, o2)
∧ x(connection_p(o1, o2)) > x(center(o1)),

and ρ(o1) : O → [0, 1] maps an object into qualitative classes of
density, namely ρice, ρwood, ρstone, ρpig .

3 Reasoning
In order to choose the best shot possible, we reason as follows. We
have decided that there are two main types of objects which are of
much interest to us. First and foremost we are interested in pigs, but
we are also interested in blocks which constitute shelters for the pigs.
We assign a value to each object based on how it influences above-
mentioned objects (see section 3.3 for more details). We choose the
object which has the highest value as our target. We calculate the
influence of one object on another by means of its vertical impact
and horizontal impact which will be discussed in the following two
sections.

3.1 Vertical Impact
In many cases blocks are placed in such a way, that hitting one of
them leads to a collapse of a number of others. In order to determine
such an influence one need to consider how blocks are located with
respect to each other. While quantitative method of calculating exact
forces values that appears in a structure requires a lot of effort and
afterwards leads to a high computational complexity reasoning algo-
rithms, we have established our own qualitative physics method. Our
method, called Vertical Impact, considers what would have happen if
one of blocks in a structure would disappear ( fall or be destroyed).
Consider a situation presented on Fig. 6 a), i.e. a situation when the
o1 block is hit, and as a result it is destroyed or falls down. The ques-
tion is if other blocks remain stable or also fall down?

o1 o2

o3

o4

o7

o6
o5

o0

p1

p2

p3

(a)

o1 o2

o3

o4

o7

o6
o5

o0

p1 p2

p3

(b)

Figure 6: Vertical Impact: hitting o1 causes o1, o3, o4, o5, o6 falling
down.

Our algorithm for Vertical Impact with o1 as an input will generate
a list of objects that will fall down if o1 falls (or becomes destroyed).
The algorithm is presented in Algorithm 1 and works as follows. At
first, for any object that is in relation above with o1, consider a set
O1 of all objects that are in relation above? with o1 and a set O2 of
objects for which there is some object in relation above from a set
O1. In the example from Fig. 6, there is one object in relation above
with o1, namely o3, then O1 = {o3, o4, o5} (marked with a blue
spline) and O2 = {o2, o6}. Next, we need to determine 3 points:
p1 – a leftmost connection point between objects from the sets O1

and O2, p2 – a rightmost connection point between objects from the
sets O1 and O2, p3 = center(

⋃
O1) – a cumulated center of mass

for objects from a set O1. We reason that object o2 (and objects that
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are in relation abovestar with o2) falls iff p3 is to the left of p1 or
to the right of p2. In our example it is the case that x(p3) < x(p1),
so objects from the set O1 will fall down, i.e. they are added to the
list fall and marked on Fig. 6 (b) with dashed crosses. In fact, it is
not the end of the algorithm, because, there are still other objects that
may fall down too. For every object from O2 (without o1) we recur-
sively lunch Algorithm 2 which checks how the cumulated center of
mass of a given block and all blocks that are in relation above? with
it but are not in fall list is located. If it is to the left of the leftmost
or to the right of the rightmost connection point then the object falls.
Afterwards, we check recursively other objects that are under already
considered block. In our case we need to check o2 and o6 – see Fig. 6
b). While o2 remains table, o6 will fall, since x(p3) > x(p2). It is
still not the end of the algorithm, because, we need to check all ob-
jects that are below o2 and o6 (marked with a blue spline), in this case
just o7 which obviously will remain stable. Finally, we lunch recur-
sively Algorithm 2 for objects that are under o1 but in our case there
are no such objects. The output of the algorithm in a given example
is a list of objects that fall, namely fall = {o1, o3, o4, o5, o6}.

Algorithm 1 Vertical impact

Input: object o1
initialize list fall with one element i.e. o1
for all o2 | above(o2, o1) do

if x(center(o2 ∪
⋃
o3 | above?(o3, o2)) ≤

min
o3|above(o2,o3)∧o3 6=o1

x(left_p(o2, o3)) or x(center(o2∪
⋃
o3 |

above?(o3, o2) ≥ max
o3|above(o2,o3)∧o3 6=o1

x(left_p(o2, o3)) then

add o2 to fall
for all o3 | above?(o3, o2) do

add o3 to fall
for all o4 | ∃o3((above?(o3, o2) ∧ above(o3, o4) ∧ o4 /∈

fall) ∨ above(o1, o4)) do
fall2 = output from Algorithm 2 with inputs: o4, fall
fall = fall ∪ fall2

Output: list fall of objects falling if o1 will fall

Algorithm 2 Recursive falling checking

Input: object o1, list of falling objects fall
if x(center(o1 ∪

⋃
o2|above?(o2, o1) ∧ o2 /∈

fall) ≤ min
o3|above(o1,o3)∧o3 /∈fall

x(left_p(o1, o3)) or

x(center(o1 ∪
⋃
o2|above?(o2, o1) ∧ o2 /∈ fall) ≥

max
o3|above(o1,o3)∧o3 /∈fall

x(right_p(o1, o1)) then

add o1 to fall
for all o2 | above(o1, o2) ∧ o2 /∈ fall do

fall2 = output from Algorithm 2 with inputs: o2, fall
fall = fall ∪ fall2

Output: updated list of falling objects fall

3.2 Horizontal Impact
The second method – called Horizontal Impact – enables to rea-
son about force propagation between objects. Notice, that hitting an
object o1 with a bird, affects also on objects touching o1. We will
(naively) say that the force propagates to nearby blocks. As an exam-
ple consider a situation presented on Fig. 7, where o3 is directly hit

by a bird with a force Fo3 . Horizontal Impact method will enable us
to estimate (qualitatively) Fo3 force and determine how it propagates
to nearby objects. At first, the force will be propagate to direct neigh-
bours, i.e., o1, o4 and o5. Afterwards the force will be propagate also
to o2 and o6 and then also to o7 but the propagation is not infinite
and there will be no significant force affecting on o8. Since the prop-
agating force always decreases, we have established a minimal force
Fmin. If the estimated force is lower then the minimal level, force
propagation is stopped – for details see Definition 13.

o1

Fo1

o2
Fo2

o4

Fo4

o3Fo3

o5

Fo5

o7

Fo7

o6Fo6

o8

o0

p1 p2

p3

Figure 7: A Horizontal Impact method for determining force propa-
gation after direct hitting o3.

The first step in the Horizontal Impact method is to estimate the
force (a value from interval [0,1]) affecting on a directly hit object
– o3 in our example. For simplicity, we have decided that the di-
rect (horizontal) force depends only on the choice of trajectory - it is
higher for the low trajectory. – see Definition 12.

Definition 12 (Direct force).

∀o1 ∈ O, t ∈ T (Fo1(o1, t) = traj_type(t, o1))

and traj_type : T ×O → [0, 1] is a following function:

∀t ∈ T,∀o1 ∈ O(traj_type(t, o1)=

{
1 if t = traj→(o1)

0.7 if t = traj↗(o1)
).

Afterwards, the force is propagated to objects that are in touch
relation with a previous object. Consider object o1 in touch relation
with o2 and force Fo1 affecting o1 that propagates to Fo2 affecting
o2. The value of Fo2 force increases whenever Fo1 increases or the
stability of o1 decreases. Formally, propagated force is described in
Definition 13.

Definition 13 (Propagated force).

Fo2 = loc_coeff · Fo1 · (1− stability(o1))
2,

where the loc_coeff distinguishes between the objects which are
directly to the right of o1, those that are directly above and those
directly below. The propagated force is the highest in the first case
(loc_coeff = 1), smaller in the second case (loc_coeff = 0.8) and
even smaller in the last case (loc_coeff = 0.2)

Notice that each force has a value from an interval [0,1]. After de-
termining the force propagation we know what forces affect objects
and therefore, we can investigate their effects. Namely, we can de-
duce, if a given force destroy an object o1, knock it down or the object
o1 remains unmoved. The effect of the force is deduced just on the
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basis of the affected object mass, i.e. if Fo1 ≥ fd(area(o1) · ρ(o1))
– the force is larger than a value of f1 function of o1 mass, then o1
will be destroyed, otherwise if Fo1 ≥ ff (area(o1) · ρ(o1)) then
o1 will be fall down, and otherwise o1 remains unmoved, where
∀a ∈ R(fd(a), ff (a) ∈ [0, 1] ∧ fd(a) > ff (a)). Notice, that if
Fo1 ≥ ff (area(o1) · ρ(o1)) for some object o1, then o1 is de-
stroyed or falls down. Hence, o1 may have a vertical influence on
other blocks and Vertical Impact algorithm presented in Section 3.1,
namely Algorithm 1 with o1 as an input needs to be lunched. As an
example consider once more a situation from Fig. 7. Let’s assume
that o3 is hardly hit with a bird and as a result, it influences signif-
icantly o5 with a force Fo5 but o3 itself remain unmoved. Let us
assume now that Fo5 ≥ ff (area(o5) · ρ(o5)) and as a result o5
falls down. Therefore, we need to check if o5 has a vertical impact
on other blocks. As presented in Section 3.1, we need to check if the
center of o6 mass is between it’s leftmost and rightmost connection
points. In our case it is not, therefore we can conclude that o6 will fall
also. The algorithm does not stop in this moment but works as pre-
sented earlier in previous section in the Algorithm 2. The described
algorithm for Horizontal Impact is presented in Algorithms 3 and 4.

Algorithm 3 Horizontal impact

Input: directly hit object oi, fired bird b, trajectory t of a shot
initialize an empty list fall of falling objects
initialize a list forces of forces affecting objects, where
forces[k] indicates a force affecting ok, i.e. Fok . Initially for each
k, forces[k] = 0
forces[i] = traj_type(t, oi)
if forces[i] ≥ ff (area(oi) · ρ(oi)) then

add oi to fall
for all oj | touch(oi, oj) do

fall2, force2 = output from Algorithm 4 with inputs:oi, oj ,
fall, forces

fall = fall2
forces = forces2

for all or | or ∈ fall do
fall2 = output from Algorithm 1 with input: or
fall2 = fall ∪ fall2

Output: list fall of falling objects, list forces of forces affecting
objects

Algorithm 4 Recursive force propagation

Input: objects oi, oj , list fall of falling objects, list forces of
forces affecting objects
if forces[i] ≥ Fmin then

forces[j] = forces[i] · loc_coeff · (1− stability(oi))2
if forces[j] ≥ ff (area(oj) · ρ(oj)) then

add oj to fall
for all ok | touch(ok, oj) ∧ forces[k] == 0 do

fall2, force2 = output from Algorithm 4 with inputs: oj ,
ok, forces, fall

fall = fall2
forces = forces2

Output: updated list fall of falling objects, updated list forces of
forces affecting objects

Afterwards, we determine am influence value of a directly hit ob-
ject to another object according to a given bird and shot trajectory.

More precisely, we introduce a function influence : O×O×B ×
T → [0, 1] presented in Definition 14.

Definition 14 (influence function).

∀oi, oj ∈ O, b ∈ B, t ∈ T (influence(oi, oj , b, t)

=

{
1 if oj ∈ fall
forces[j] otherwise.

)

where oi is a directly hit object, i.e. an input to the Algorithm 3.

Obviously, influence(o1, o2, b, t) = 0 means that while shoot-
ing at o1 with a bird b and trajectory t, o1 has no influence on o2,
whereas influence(o1, o2, b, t) = 1 means that if o1 will fall, than
undoubtedly o2 will fall also.

3.3 Value estimation
In order to choose the best shot in a given Angry Birds gameplay we
need to estimate an overall value of available shots. This value de-
pends on the type of the bird that will be lunched, type of the shooting
trajectory (high or low parabola) and a block which is a direct target
of the shot. More precisely, the value of a shot, i.e., the value of a
function value : B × T × O → R increases whenever the stability
of a direct target of a shot decreases or the influence of a directly hit
object on interesting objects increases, where interesting objects are
pigs and their shelters. For the exact description see in Definition 15.

Definition 15 (value function).

value(b, t, o1) =
corr_fact
stability(o1)

·
∑
o2∈O

ivalue(o2) · influence(o1, o2, b, t)

+ shape_coeff · shape_value,

where ivalue : O → R maps an object into its interesting value as
follows:

∀o1 ∈ O(ivalue(o) =

{
1 if o1 is a pig
shelter_val(o1) otherwise

),

and the corr_fact is takes different values depending on the com-
bination of the type of the bird and the type of material of the given
object. This factor takes into account the ability of certain birds to
destroy certain blocks (for instance yellow bird is very prolific effi-
cient against wooden blocks). For the exact values of corr_fact see
the table below:

Table 1: All possible cases of adding qualitative distances.
hhhhhhhhhhhbird_type

object_type
pig ice wood stone

red 1 0.7 0.8 0.3
blue 1 1 0.1 0.01

yellow 1 0.1 1 0.01
white 1 0.7 0.8 0.6
black 1 1 1 1

Based on the fact that spheres play a significant role on certain
game levels, we have decided to increase their value in the following
way. If a sphere is located higher than some pig and there is a straight
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path (without any obstacles) leading from the sphere to that pig we
increase the value of the sphere. We further increase the sphere’s
value for each additional pig on the given path. We only count one
such path (the one with the most pigs on it’s way). The shape_value
returns the highest number of pigs on the path leading from the given
sphere to any pig and shape_coeff ( = 0.4) scales down this num-
ber, so that it is still pays off better to shoot directly at a pig than
to aim at a sphere that would kill that pig. The provided trajectory
module enables to determine directly reachable objects. After cal-
culating reachable objects, we indicate a best shot as a one with a
highest value among reachable shots. Notice, that since we consider
only shooting at center points of objects, the number of available and
reachable shots is small enough to perform all presented calculations
in a reasonable time.

4 Evaluation
We have tested our algorithm on the first twenty one levels of the
Poached Eggs scenario. If the algorithm failed to complete a given
level, we repeated that level, but only once. If it failed to complete
a given level twice, we would move on to the next level. It took our
algorithm 33 minutes to go through all the 21 levels. It failed to com-
plete 2 levels. The total score recorded was 753080, which gives an
average score of 35861 per level. We also run the Naïve Naive Agent
under the same conditions. It took the Naïve Agent 34 minutes to go
through all the levels. It failed to complete 3 levels. The total score
recorded was 687490, which gives an average score of 32738 per
level.

5 Conclusions and future work
We have outlined a procedure for reasoning about the choice of a tar-
get in an Angry Birds game. The procedure involves several notions,
which are central to the reasoning, such as stability, shelter, impact,
influence. We choose our target to be the object that has a low stabil-
ity, but it influences (by having a high, either vertical or horizontal,
impact) objects which are pigs or shelters of pigs. Further testing is
required to fine-tune the coefficients used in formulas for calculating
numerical values of these notions (for instance the density of build-
ing materials). The procedure shows promise, but it has its flaws.
There are certain configurations of objects, which serve as counter-
examples to our reasoning. However these configurations are mostly
theoretical possibilities as they seldom occur in the actual game. Still
there is a lot of work to be done in order to expand our reasoning as
to include the abilities of certain birds (for instance the ability to drop
an egg of the white bird) and to include the behaviour of blocks of
certain shapes (spheres or certain complex polygons). There is also
potential for extending the procedure to specify how and where a
given block will fall if it falls. In other words one can use the above-
mentioned concepts to reason not only that a given block will fall but
that it will fall, say, to the right and hit another block. All of this can
be done using the introduced notion of connection points.
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